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FINITE-ELEMENT ANALYSIS OF LAMINATED
BIMODULUS COMPOSITE-MATERIAL PLATES

J.N. REDDY and W.C. CHAO
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma, Norman, OK 73019

Abstract - Finite element analysis of the equations governing the small-
deflection elastic behavior of thin plates laminated of anisotropic bi-
modulus materials (which have different elastic stiffnesses depending
upon the sign of the fiber-direction strain) is presented. Single-layer
and two-layer cross-ply, simply-supported rectangular plates subjected to
sinusoidally distributed normal pressure and uniformly distributed normal
pressure are analyzed. For the sinusoidally loaded case, the finite ele-

ment solutions are gratifyingly close to the exact closed-form solutions.

NOMENCLATURE

Aij = stretching stiffness

a,b = dimensions of plate in x and y directions

Bij = bending-stretching stiffness
¢ =a/b
Dij = bending stiffness
Efl,E}1,etc. = respective compressive and tensile Young's moduli for

orthotropic bimodulus material (without subscripts for
isotropic bimodulus material)

F. = finite-element force components
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engineering structures.

shear moduli for orthotropic bimodulus material

total thickness of plate

Egzwh:’/qa“

= stiffness coefficients in the finite-element formulation
= stress couples and stress resultants (i=1,2,6)

= plane-stress-reduced stiffnesses for orthotropic material

= normal pressure

= maximum normal pressure

= midsurface of the plate

= finite-element matrix coefficients
= displacements in x,y,z directions

= plate coordinates in longitudinal, transverse, and downward
thickness directions

= an/h’zny/h

= neutral-surface positions associated with . ”
= penalty parameters

= fiber-direction strain in i-th layer

= strain component at arbitrary location (x,y,z),(j=1,2,6)
= finite-element interpolation functions

= stress component (j=1,2,6)

= principal Poisson's ratios for orthotropic bimodulus material

= angle between fiber direction and plate reference direction
(x axis)

= slopes, 3w/3x, 3w/3y (and slope functions in the YNS theory)

1. INTRODUCTION

Fiber-reinforced composite materials are finding widespread use in

This is primarily due to their high stiffness-




to-weight ratio, and anisotropic material properties that can be tailored
I through variation of the fiber orientation and stacking sequence. Material
characterization of composite materials has shown that certain composite
o materials, known as bimodulus materials, behave differently in simple tension
and compression under static loading [1]. The analysis of bimodulus mater-
ials is more difficult than that of ordinary materials (i.e., materials whose
elastic moduli are the same in tension and compression) since the elastic
moduli depend on the sign of the stress, which is unknown a-priori. A plate
bent by transverse load experiences both tension and compression, and there-
fore the analysis of plates made of bimodulus material becomes more difficult.
The first material model appropriate for bimodulus materials is appar-
ently due to Ambartsumyan and Khachatryan [2,3]. There have been only a small
number of bimodulus material applications to structural plate problems (see
[4-11]). A1l of these analyses were limited to isotropic materials with
different properties in tension and compression. Ambartsumyan [3] and Tabaddor
[9] proposed linearized material models for bimodulus anisotropic materials,
whilz Jones and Morgan [10] presented a closed-form solution for cylindrical
P bending of a thin, cross-ply laminate. More recently, Bert [11] presented
a macroscopic material model for bimodulus fiber-reinforced composites. This
model was found to agree well with experimental results. A summary of various
bimodulus material models can be found in the survey paper of Bert [12].

Using the material model of Bert [11], closed-form solutions have been devel-

oped for clamped elliptic plates under uniform loading and simply-supported

rectangular plates under sinusoidal loading [13].
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The present paper is concerned with the finite-element analysis of
thin elastic plates laminated of anisotropic bimodulus materials described
by the model of [11]. Numerical results are presented for single-layer
and two-layer cross-ply, simply-supported rectangular plates under both
sinusoidal loading and uniform loading. Only in the case of sinusoidal
Toading does a closed-form solution exist [13] for rectangular plates. In
this case,the present finite-element solution closely agrees with the exact
closed-form solution. Apparently, the present investigation is the first
to consider the finite-element analysis of anisotropic bimodulus plates

of finite dimensions.

2. THEQRY AND FORMULATION
Consider a plate of constant thickness h composed of thin anisotropic
layers oriented, generally speaking, at angles 6;,85.... The origin of the
coordinate system is located within the middle plane (x,y) with the z-axis
being normal to the midplane. The material of each layer is assumed to
possess a plane of elastic symmetry parallel to the xy-plane. The thin-

plate equilibrium equations, in the absence of body forces and body moments,

are
Ny BNG aNg Ny
—f —— = y — + — = 0
3x 9y ax | 3y
(2.1}
Zt2 i gl
ax 3x3y | 3y
where

h/2 h/2
(NI’N29N6) = j h/z(ol,oz,cs)dz N (MI,M2,M6) - [ 2(01,02,06)2 dz (2.2)




A1l of the symbols have the usual meaning and are defined in the Nomenclature.
In the thin-plate theory (Kirchhoff hypothesis), the strain-displace-

ment relations are given by

38 38 36 39
. GEBUEs ] o M Ly = 3y 3V D St
S TEP = Ay s Gt om Rk o Hg. oE Sms g (ay + ==} (2.3)
where ex and ey are the slopes,
W _ _ oW _
g B + ey Sy 0 (2.4)

Equations (2.1)-(2.4) are valid for both ordinary and bimodulus mat-
erials. What distinguishes a bimodulus material from an ordinary material
are the constitutive relations. Following Bert's [11] fiber-governed macro-
scopic material model, we assume that there are two symmetric plane-stress
reduced stiffness matrices: one when the fibers are in tension along their
length and another when they are in compression in the same direction. Then

the stress-strain re1ation.for a thin orthotropic bimodulus material may be

written as
- Ui Yoe O "
o2 1% | Qe Qoake 0 €2 (2.5)
93 0 . R €6

where Qijkl denote the plane-stress-reduced stiffnesses for 2-th aniso-

tropic layer in tension (k=1) or compression (k=2):

& 2
Uigan 1T Re 2V
Q5ka = (2.6)
» 2
Q52 1 ep < 0




where ei denotes the fiber-direction strain at any arbitrary point in layer,
L.
The stretching, bending-stretching coupling, and bending stiffnesses of
% the bimodulus laminate are defined exactly in the same way as in the case of an
ordinary laminate,

N 2, ; Z1
(A goBygDyg) = T () 7 g1,z 4 [
% n

2

i21 (1.2,2%)dz} (2.7}
where z, is the distance from the midsurface to the neutral plane (which is
unknown a-priori). Note that, in addition to performing the integrations

! in a piecewise manner from layer to layer, one must take into account the

possibility of different properties (tension or compression) within a layer.

For example, in the two-layer, cross-ply case, the coefficients Aij are

given by
| [zny (0 nx h/2 »
| o Tl RO TR ST T *f Qi5,, 92 "f Qj1, 92 (2.8) i
h/2 zny 0 Tox

wherein it is assumed that layer, & = 1 (bottom) occupies the thickness

space from z = 0 to z = h/2 and layer, 2 = 2 (top) occupies the thick-
ness space from z = -h/2 to z = Q0 (z is measured positive downward from the

midplane). In writing egns. (2.8) it is assumed that the upper portion of

the top layer (=2) is in compression (k=2) in the fiber direction and that
the lower portion of the top layer is in tension (k=1), while the portion
z2=0toz = - of the bottom layer (2=1) is in compression and the por-
tion z = 2y to z = h/2 is in tension. Here znx and Zny denote neutral-

surface positions associated with € " 0 and ey = 0, respectively.
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Now the laminate constitutive relations for an arbitrary laminate of
anisotropic material are (using eqns. (2.2), and (2.5)),

p -

Ny Ay u,
< X
N A A
2 12 22 Vay
No | | Ais Azs Ass  symmetric Usy * Vo,
x5 S (2.9)
My Bi1 Bi2 By Dna =
\ ]
M B B B D D -9
2 12 B2z Bag D12 22\ "
M B B B D D D - (s + 0
5 | F1e P2 Fes Bin g Uos ( TR

Substituting egns. (2.9) into eans. (2.1), one obtains the governing’
equations in terms of the displacements. For the finite-element formulation,
we construct the associated functional. The problem of seeking solutions
to eqns. (2.7) and (2.9) is equivalent to minimizing the total potential
energy,

h/2 J

)= 3]
2J-h/zR

™ (u,v,w,ex,e o.e. dxdy dz + [ qw dxdy (2.10)
R

y

subject to the contraints in eqn. (2.4). Note that if N and ey are
eliminated from eqn. (2.10) using relations (2.4), the resulting total
potential energy functional involves the second-order derivatives of the
transverse deflection, and consequently imposes severe continuity require-
ments on the finite-element interpolation functions.

To include the constraint conditions into the variational formulation,
we use the penalty-function method (see Reddy [14]). In the penalty method,
a constrained minimization problem is replaced by an unconstrained minimi-
zation problem whose solution converges to the true solution in the limit

certain parameter, called the penalty parameter, approaches the value of




infinity. For details, the reader is referred to the senior author's recent paper
[14].

The modified functional to be minimized is given by

ol s0,08.) = (uvang o ) + Loy (-0 ) + o (o] axey (2.17)
R

where @, and a, are the penalty parameters whose values are to be preassigned

(of the order 10!2 - iOlS). Generally speaking, the penalty functional ™

approaches = as %; and a, approach =, and for finite values of @, and @y, =

has no physical significance. However, in the case of plates, m_ has a

physical significance (only incidental): for the following values of @, and

%, 1t corresponds to the functional associated with the Yang, Norris, and

Stavsky theory (a generalization of Mindlin's theory for isotropic plates to

Taminated anisctropic plates) [14]:

h/2
.f
J-n/2

h/2 /2
stdz s CL% < k% j 5 Q%dz s Q&g M klkz Qusdz (2]2)
i “n/2

al = k%
where k; and k, are the shear correction factors, and sx and ay are the

slope functions of the thick-plate theory (not equal to the slopes of w).
Thus (in retrospect only) the Mindlin  thick-plate theory can be interpreted
as a theory obtained from the thin-plate theory by perturbation; for suffi-

ciently large 2's one recovers the thin-plate theory from the thick-plate

theory.

3. FINITE-ELEMENT MODELS

We now construct a finite-element model based on 7p(u,v,w,ax,ey).
We assume, over each element Re’ the same kind of interpolation for all of

the variables,
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, etc. (n = nodes per element) (3.1)

where ¢? are the element interpolation (or shape) functions, and u?. and
v? are the nodal values of u® and V&, respectively. Substituting (3.1)
into the first variation of ng (u,v,w,ax,ey), and collecting the coeffi-

cients of the varijations, Sujs 5Vi’ etc., we obtain

[k%10a%) = (F%) (3.2)

&

where (2%} = {{u} {ve} we} {Si} {9 ;‘}T, and the elements K?? («,8=1,2,

.53 1,j=1,2,...,n) of the stiffness matrix are given by

1= Ay ST
535 "1 %y
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3 X Xy X
K22 = Ayq (51§ +# S3{) * Aga ST+ Ags ST

1] cat b
X
K%; - 816 S o Bse 513 e 812 S st S1J

X X X
K33 = Bag (S AR y) * Bgs 53 * 822 s{j

33 a2 &N 2 Y Xy Xy
Kij = of Syj * 93 S35 * o, (555 + 553)

34 o g2 §N yo 38 = X0 . 2 g¥O

K'ij as Sij+a13'2 Sii s Kij 3,8, SU"': S
% sXY X 0

K:; - Dllsjj 5 Dls( ij + 35 y) i Dsssjilj 2 :"% Sij

) (o]
K?j = 01,8] y " Dsos Y + 0165 + ozss{j taa, sij

S = xy AR X J 2' g0
K?} = 025(3 e s ) D“°S1J 0225i = é_ S1J
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13 o Y25 5 sn oo L o.b.  dxdy , (£sn20,X,
Mivkie0 , ¢ Lzed’m%m xdy , (£,n=0,x,y)

F3

I = 22 -ich = ES o
1 B S L e Bt

"
Sy
e}
(1)
0
-
Qo
x
o
~<

:'1 The element stiffness matrices are assembled in the usual manner, and
boundary conditions of the problem are imposed before solving for {a}.
In the present study linear (n=4) elements of the serendepity family

are used. The element stiffness-matrices for the linear element are of

order 20x20.

4. NUMERICAL RESULTS
In the following we present numerical results for (a) single-layer,
isotropic and orthotropic bimodulus rectangular plates, and (b) two-layer,
cross-ply (0°/90°), orthotropic bimodulus rectangular plates both with simply-
supported edge conditions. A mesh of 5x5 in the guarter plate is employed.
The side-to-thickness ratio is taken to be 100. For simply-supported plates
under sinusoidal loading, the neutral surfaces are planes and closed-form
solutions exist [13]. |
For single-layer, isotropic bimodulus rectangular plate, approximate
solution (Kamiya [7]), and closed-form solutions (8ert [13]) are available.
f Table 4.1 presents a comparison of dimensionless maximum deflections obtained
E by various methods for the case of sinusoidal loading. Dimensionless neutral-
; surface position for the same case are compared in Table 4.2. Numerical
results obtained by all of the methods are very close. Note that the Jloca-

tion of the neutral surface is independent of the plate aspect ratio.




Table 4.1. Comparison of dimensionless maximum deflections for
sinusoidally loaded, simply supported square plate
made of isotropic bimodulus materials (v¢=0.20, b/h=100)
C]osethorm Appro;imate l Finite-element solution
a/blet/EC solution [13] | solution [7]J (present work)
W = ¢ 3 K = = u= v=
W = Wnax Eh /qoa (x=0,y=0) o umax/wmax v Vmax/wmax
(y=0,x=a/2) | (y=a/2,x=0
0.007018 — 0.006966 0.5666 0.2832
0.51 .0 0.004730 - 0.004697 0.0 0.0
] 0.003264 - 0.003243 0.6441 0.3219
1
0.04387 0.0435 0.04351 0.2833 0.2833
1.0 0.02956 —_ 0.02933 0.0 0.0
0.02040 0.0194 0.02024 0.3224 | 0.3224
b i
0.11230 - 0.11139 0.1417 0.2835
2.0 0.07569 - 0.07508 0.0 0.0
0.05223 - 0.05182 0.1928 0.3226
|
|
Table 4.2. Values of the dimensionless nettral-surface position for the
isotropic bimodulus rectangular plate of Table 4.1 (b/h=100)
ey a/b = 0.5 a/b = 1.0 a/b = 2.0
E"/E Closed-form | Present |Closed-form | Present |[Closed-form | Present
solution[13] FEM solution[13] FEM solution[13] FEM
solution solution solution
0.5 - 0.08951 - 0.08951| -0.08951 - 0.08951| -0.08951 - 0.08951
3 2, 0.0 0.0 0.0 0.0 0.0 0.0
* 2.0 0.10188 0.10189} 0.10188 0.10189 0.10188 0.10189
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For the orthotropic bimodulus plates, the following elastic properties

(see Bert [13]) are used:

1. Aramid-Rubber

Tensile Compressive
Properties Properties

Major Young's modulus (GPa) 3.5842 0.0120
Minor Young's modulus (GPa) 0.00909 0.0120
Major Poisson's ratio 0.416 '0.205

Shear modulus (GPa) 0.0037 0.0037

2. Polyester-Rubber
Major Young's modulus (GPa) .617 0369

0 0.
Minor Young's modulus (GPa) 0.008 0.0106
Major Poisson's ratio 0.475 0.185
Shear modulus (GPa) 0.00262 0.00267

Table 4.3 shows the closed-form solutions [13], and the finite-element
solutions for dimensionless deflecticns and neutral-surface locations of
single-layer, simply-supported rectangular plate subjected to sinusoidal
loading. There is excellent agreement between the closed-form solutions
and the finite-element sclutions.

Numerical results are presented in Table 4.4 for two-layer, cross-ply
laminated plate (0°/90°) subjected to sinusoidal loading. Again, the closed-
form results and the finite-element results are gratifyingly close for both
the deflections and neutral-surface locations (which are independent of x
and v).

The example problems considered thus far admit closed-form solutions
due to the fact that the neutral-surface locations are constant (i.e.,

independent of x and y) for the particular geometry, support conditions, and

loading considered. For the same geometry (i.e., rectangular) and boundary




Table 4.3. Fiber-direction neutral-surface location and deflections
for simply-supported rectangular plate of single-layer (0°)
aramid-rubber and polyester-rubber (b/h = 100)

= |aspect Zy = Zpy/h W= Wooy E5,N7/G50" Finite-element solution
e e T T )
= solution solution BRI SRk
J 0.5 0.4457 0.4454 0.001881 0.001875 0.2808 0.1306
j 0.6 0.4457 0.4451 0.003661 0.003640 0.2342 0.1093
% 0.7 0.4457 0.4447 0.006253 0.006211 0.2007 0.09171
i % 0.8 0.4444 0.4440 0.009679 0.009605 0.1754 0.07738
£§ 0.9 9.4444 0.4431 0.01387 0.01376 0.1556 0.06583
;? 1.0 0.4424 0.4420 0.01870 0.01854 0.1397 0.05647
:Z | 1.2 0.4398 0.4393 0.02956 0.02928 0.1158 0.04270
‘g 1.4 0.4368 0.4363 0.04089 0.04049 0.09864 0.03337
E 1.6 0.4334 0.4328 0.05170 0.05120 0.08562 0.02686
! 1.8 0.4298 0.4292 0.06143 0.06085 0.07548- 0.02222
{ | 2.0 0.4260 0.4254 0.06995 0.06931 0.06732 0.07882
3 0.5 0.3040 0.3041 0.000816 0.000821 0.1974 0.08969
0.6 0.3040 0.3041 0.001655 0.001656 0.1588 0.07239
0.7 0.3040 0.3039 0.002975 0.002968 0.1364 0.06110
] .E 0.8 0.3040 0.3036 0.004888 0.004866 0.1194 0.05206
g. 2‘ 0.9 0.3040 0.3031 0.007478 0.007434 0.1061 0.04482
1 % 1.0 0.3027 0.3026 0.01079 0.01071 0.09548 0.03966
: 'g 5.7 0.3014 0.3012 0.01954 0.01935 0.07930 0.03062
%; 1.4 0.2998 0.2995 0.03056 0.03021 0.06764 0.02495
e A 01 0.2979 0.2976 0.04278 0.04224 0.05882 0.02102
1.8 0.2958 0.2954 0.05505 0.05431 0.05192 0.01821
2.0 0.2936 0.2931 0.06652 0.06560 0.04636 0.01616
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Table 4.4. Neutral-surface positions and deflections for simply-
supported rectangular plates of cross-ply laminated aramid-
rubber and polyester-rubber (sinusoidal loading case).

" z. z, WES, h3/qb*
o |Aspect
& |ratio ¢ |Closed-form |[Finite- |Closed-form | Finite- [|Closed-form | Finite-
- solution[13] |element |solution[13] | element |solution[13]| element
= solution solution solution
0.5 0.4438 0.439C --0.07137 - 0.07202 | 0.001808 0.001801
0.6 0.4438 0.4419 - 0.06052 - 0.06208 ; 0.003486 0.003464
0.7 0.4423 0.4419 - 0.05165 - 0.05302| 0.005925 0.005880
0.8 0.4413 0.4413 - 0.04489 - 0.04608 | 0.009162 0.009082
_E 0.9 0.4401 0.4404 - 0.03964 - 0.04145| 0.01315 0.01303
;E 1.0 0.4389 0.4392 -.0.03546 - 0.03712| 0.01780 0.01761
Ié 1.2 0.4362 0.4360 - 0.02925 - 0.03060| 0.02838 0.02807
5 1.4 0.4332 0.4334 - 0.02487 - 0.02592| 0.03961 0.03917
o 1.6 0.4300 0.4302 - 0.02163 - 0.02295| 0.05046 0.04990
1.8 0.4265 0.4266 - 0.01917 - 0.02029| 0.06032 0.05967
240 0.4228 0.4229 - 0.01815 - 0.01818( 0.06894 0.06826
05 0.3650 0.3719 - 0.1412 - 0.1310 0.001902 0.001886
0.6 0.3650 0.3653 - 0.1244 - 0.1277 0.003672 0.003648
- 0.7 0.3638 0.3642 - 0.1139 - 0.1I71 0.006227 0.006175
.E 0.8 0.3638 0.3632 - 0.1060 - 0.1085 0.009542 0.009448
2 0.9 0.3622 0.3626 - 0.1003 - 0.1039 0.01348 0.01333
$ 1.0 0.3622 0.3618 - 0.09605 - 0.09925| 0.01783 0.01762
§ ] i 0.3594 0.3603 - 0.09029 - 0.09415| 0.02680 0.02646
{; 1.4 0.3573 0.3583 - 0.08670 - 0.08958| 0.03497 0.03451
i 1.6 0.3550 0.35€0 - 0.08432 - 0.08628| 0.041k7 0.04112
1.8 0.3525 0.3541 - 0.08268 - 0.08070{ 0.046v0 0.04625
2.0 0.3498 0.3541 - 0.08150 - 0.07757| 0.05090 0.05021
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conditions (i.e., simply-supported), if the loading is changed to trat of
uniform loading, closed-form solution does not exist. However, the finite-
element method can predict the neutral-surface locat’ons (which may now
depend on x and y) and deflections.

Table 4.5 shows the nondimensional neutral-surface locations at the
center of the plate (i.e., in element 1), and deflections for the problem
of Table 4.4., but with uniform loading. The trend and magnitudes of the
solutions are similar to those in Table 4.4 for the sinusoidal loading.
Table 4.6 shows the nondimensional neutral-surface locaticns for various
elements. It is clear that z, does not vary much along x or y. However,
z, varies noticeably with y while it is almost constant with respect to x.
Also, the locations change with the plate aspect ratio.

As pointed out earlier, the present finite-element formulation is also
good for thick plates (i.e., accounts for transverse shear deformation).
Representative results are presented to show the effect of the thickness
on the neutral-surface locations and deflections (see Reddy and Bert [15]).

Figure 4.1 shows the influence of the aspect ratio (b/a) and side-to-
thickness ratio (a/h) on the location of neutral surfaces for a single-lay-
er, orthotropic, bimodulus, simply supported rectangular plate subjected

to sinusoidal loading. The following elastic properties are used:

EY, = 3.584 GPa , €S, = 1.792 6Pa , €, = £}, , £S5, = €5,
6l: = 65, s 1.27 8P, vis wusy 5 04 , o8, v o5, « 0.2

Note that for b/a = 1, the neutral surfaces associated with x- and y-

irecti inci i.e. = ’
directions coincide (i.e., Lo Zny)




Table 4.5. Neutral-surface locations and deflections for simply-
supported rectangular plates of cross-ply laminated
aramid-rubber and polyester-rubber (uniform-loading case)

':ig;] a/b z, I, W Ux 102| v x 102
0.5 | 0.4439 | -0.114 0.00269 2.8400 | 0.2744

0.6 | 0.4431 | - 0.07943 | 0.00531 2.3721 | 0.2161

0.7 | 0.4422 | - 0.06152 | 0.00917 2.0329 | 0.1781

0.8 | 0.4411 | - 0.05067 | 0.01433 1.7788 | 0.1513

& 10.9 | 0.4400 | - 0.04328 | 0.02017 | 1.5815 | 0.1314

S [1.0 | 0.4387 | - 0.03787 | 0.02812 1.4238 | 0.1161
< (1.2 | 0.4358 | - 0.03037 | 0.04501 1.1884 | 0.0940
8 [1.4 | 0.4323 | -0.02529 | 0.06284 1.022 0.0785

= 1.6 | 0.4281 | - 0.02157 | 0.07989 0.8995 | 0.0671

, 1.8 | 0.4232 | - 0.01890 | 0.09516 0.8066 | 0.0582
2.0 | 0.4174 | - 0.01640 | 0.1082 0.7352 | 0.0509

0.5 | 0.3659 | - 0.19040 | 0.00287 2.3433 ' 0.5546

0.6 | 0.3648 | - 0.14270 = 0.00568 | 1.9502 ' 0.4555
' 0.7 | 0.3639 | - 0.12160 | 0.00976 1.6709 | 0.3960 |
& 0.8 |0.3631 | -0.10980 | 0.01507 1.4622 ‘ 0.3583 |
S 0.9 |0.3622 |-0.10230 | 0.02137 1.3000 | 0.3330 |
£ (1.0 | 0.3612 | - 0.09714 | 0.02832 1.1724 | 0.3152 !
@ 1.2 | 0.3590 | - 0.09046 | 0.04258 0.9818 | 0.2918 |
= |1.4 | 0.3564 | - 0.08648 | 0.05544 0.8495 ' 0.2782 |
“ 11.6 | 0.3533 | - 0.08390 | 0.06580 0.7543 | 0.2693 !
(1.8 | 0.3493 | - 0.08182 | 0.07361 0.6844  0.2624 l

12.0 | 0.3445 ! - 0.08043 | 0.07927 0.6332 l 0.2571
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E Table 4.6. Neutrg]-surface_s locations as a function of the element
| location for simply-supported rectangular plates of
! cross-ply laminated aramid-rubber and polyester-
| rubber (uniform-loading case)
i e T Eraa a/b = 0.5 a/b =1 a/b = 2.0
; erial No. zx Zy Zx Z_y Zx zv
1 0.44397 |- 0.11414 0.44002 | - 0.043286 | 0.41739 | - 0.016405
2 0.44398 |- 0.11481 0.44013 | - 0.043781 | 0.42006 | - 0.017267
3 0.44401 |- 0.11618 0.44033 | - 0.044708 | 0.42421 | - 0.018940
§ 4 0.44405 |- 0.11792 0.44059 | - 0.045820 | 0.42841 | - 0.021052
§ 5 | 0.44407 |- 0.11919 0.44079 | - 0.046613 | 0.43094 | - 0.022623
‘ t;v 6 0.44325 |- 0.08752 0.43947 | - 0.040654 @ 0.41693 i - 0.016184
: § N 0.44197 |- 0.0597N 0.43835 | - 0.036348 | 0.41612 | - 0.015769
1 <y {16 0.43980 |- 0.04162 0.43686 | - 0.031648 | 0.4523 s 0.015219
’ 21 0.43796 |- 0.03378 0.43572 | - 0.028602 | 0.41463 ' - 0.014782 '
| |
i 4
; i 1 0.36597 |- 0.19040 0.36124 | - 0.097142 | 0.34451 | - 0.080437
: ! 2 0.36598 |- 0.19101 0.36137 | - 0.097651 | 0.34755 ‘ - 0.081660
3 E 3 0.36600 |- 0.19224 0.36161 | - 0.098586 | 0.35165 L% 0.082619
‘ :5: 4 0.36603 |- 0.19386 0.36190 | - 0.099683 | 0.35519 ; - 0.084542
!;-, 5 0.36605 |- 0.19505 0.36211 | - 0.010045 | 0.35709 & - 0.086014
i 2 6 l 0.36526 |- 0.15496 0.36101 | - 0.096155 | 0.34431 | - 0.080356
4 | %’ 11 0.36415 |- 0.12374 0.36055 | - 0.094110 | 0.34397 E - 0.080201 |
é i o : 16 0.36290 |- 0.10556 0.35999 | - 0.091909 | 0.34358 | - 0.079991 |
T l i‘ 21 0.36199 |- 0.098157 | 0.35961 | - 0.090318 | 0.34331 | - 0.079821
i
| v
i :
: e 1 |
! 16| |
|
T EE
112 3&_5_‘ {5




Similar results are presented in Figs. 4.2 and 4.3 for a two-layer,

cross-ply (0°/90°), rectangular plate of aramid-rubber under sinusoidal

loading. Note from Fig. 4.2 that the neutral-surface location, ZX is

virtually unchanged for aspect ratios greater than 1, while the neutral-
surface location, Zy, increases proportional to the aspect ratio. It
should also be noted that the neutral surfaces do not coincide in the cross-
ply case for b/a = 1.

Figure 4.4 shows the influence of the aspect ratio, and side-to-thick-
ness ratio on the transverse deflection for the single-layer and two-layer
cross-ply plates discussed above. The effect of thickness on the deflec-

tion is more pronounced than the effect of the aspect ratio.

5. SUMMARY AND CONCLUSIONS ;
A penalty finite-element formulation of the equations governing the

small deflection elastic behavior of thin plates laminated of anisotropic
bimodulus materials is presented. The resulting finite element model is
valid for the analysis of thin and moderately thick plates. Single-layer
and two-layer cross-ply, simply-supported thin rectangular plates subjected
to sinusoidally distributed normal pressure and uniformly distributed normal
pressure are analyzed. In the case of sinusoidal loading, the present
finite-element solutions agree very closely with the exact closed-form solu-

tions. To illustrate the validity of the present finite element model for thick plates

numericalresults are presented for side-to-thickness ratio of 10 for single-

layer and two-layer cross-ply rectangular plates.
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Fig.4.1 Neutral-surface location vs. plate aspect ratio,
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rectangular plate under sinusoidal loading.
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Fig. 4.2 Neutral-surface location vs. plate aspect ratio
for two-layer, cross-gly (0°/90°) square plate
under sinusoidal loading.
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Fig. 4.4 Transverse deflection vs. plate aspect ratio,
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